Vector stores
A vector store stores embedded data and performs similarity search.
Select embedding model:
- OpenAI
- Azure
- AWS
- HuggingFace
- Ollama
- Cohere
- MistralAI
- Nomic
- NVIDIA
- Fake
pip install -qU langchain-openai
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
pip install -qU langchain-openai
import getpass
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import AzureOpenAIEmbeddings
embeddings = AzureOpenAIEmbeddings(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-vertexai
from langchain_google_vertexai import VertexAIEmbeddings
embeddings = VertexAIEmbeddings(model="text-embedding-004")
pip install -qU langchain-aws
from langchain_aws import BedrockEmbeddings
embeddings = BedrockEmbeddings(model_id="amazon.titan-embed-text-v2:0")
pip install -qU langchain-huggingface
from langchain_huggingface import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model="sentence-transformers/all-mpnet-base-v2")
pip install -qU langchain-ollama
from langchain_ollama import OllamaEmbeddings
embeddings = OllamaEmbeddings(model="llama3")
pip install -qU langchain-cohere
import getpass
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import CohereEmbeddings
embeddings = CohereEmbeddings(model="embed-english-v3.0")
pip install -qU langchain-mistralai
import getpass
os.environ["MISTRALAI_API_KEY"] = getpass.getpass()
from langchain_mistralai import MistralAIEmbeddings
embeddings = MistralAIEmbeddings(model="mistral-embed")
pip install -qU langchain-nomic
import getpass
os.environ["NOMIC_API_KEY"] = getpass.getpass()
from langchain_nomic import NomicEmbeddings
embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
pip install -qU langchain-nvidia-ai-endpoints
import getpass
os.environ["NVIDIA_API_KEY"] = getpass.getpass()
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
embeddings = NVIDIAEmbeddings(model="NV-Embed-QA")
pip install -qU langchain-core
from langchain_core.embeddings import DeterministicFakeEmbedding
embeddings = DeterministicFakeEmbedding(size=4096)
Select vector store:
- In-memory
- AstraDB
- Chroma
- FAISS
- Milvus
- MongoDB
- PGVector
- Pinecone
- Qdrant
pip install -qU langchain-core
from langchain_core.vector_stores import InMemoryVectorStore
vector_store = InMemoryVectorStore(embeddings)
pip install -qU langchain-astradb
from langchain_astradb import AstraDBVectorStore
vector_store = AstraDBVectorStore(
embedding=embeddings,
api_endpoint=ASTRA_DB_API_ENDPOINT,
collection_name="astra_vector_langchain",
token=ASTRA_DB_APPLICATION_TOKEN,
namespace=ASTRA_DB_NAMESPACE,
)
pip install -qU langchain-chroma
from langchain_chroma import Chroma
vector_store = Chroma(embedding_function=embeddings)
pip install -qU langchain-community
from langchain_community.vectorstores import FAISS
vector_store = FAISS(embedding_function=embeddings)
pip install -qU langchain-milvus
from langchain_milvus import Milvus
vector_store = Milvus(embedding_function=embeddings)
pip install -qU langchain-mongodb
from langchain_mongodb import MongoDBAtlasVectorSearch
vector_store = MongoDBAtlasVectorSearch(
embedding=embeddings,
collection=MONGODB_COLLECTION,
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
relevance_score_fn="cosine",
)
pip install -qU langchain-postgres
from langchain_postgres import PGVector
vector_store = PGVector(
embedding=embeddings,
collection_name="my_docs",
connection="postgresql+psycopg://...",
)
pip install -qU langchain-pinecone
from langchain_pinecone import PineconeVectorStore
from pinecone import Pinecone
pc = Pinecone(api_key=...)
index = pc.Index(index_name)
vector_store = PineconeVectorStore(embedding=embeddings, index=index)
pip install -qU langchain-qdrant
from langchain_qdrant import QdrantVectorStore
from qdrant_client import QdrantClient
client = QdrantClient(":memory:")
vector_store = QdrantVectorStore(
client=client,
collection_name="test",
embedding=embeddings,
)
Vectorstore | Delete by ID | Filtering | Search by Vector | Search with score | Async | Passes Standard Tests | Multi Tenancy | IDs in add Documents |
---|---|---|---|---|---|---|---|---|
AstraDBVectorStore | โ | โ | โ | โ | โ | โ | โ | โ |
Chroma | โ | โ | โ | โ | โ | โ | โ | โ |
Clickhouse | โ | โ | โ | โ | โ | โ | โ | โ |
CouchbaseVectorStore | โ | โ | โ | โ | โ | โ | โ | โ |
DatabricksVectorSearch | โ | โ | โ | โ | โ | โ | โ | โ |
ElasticsearchStore | โ | โ | โ | โ | โ | โ | โ | โ |
FAISS | โ | โ | โ | โ | โ | โ | โ | โ |
InMemoryVectorStore | โ | โ |